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Abstract— When new wireless technologies are deployed and
subjected to real usage patterns, unforeseen performance prob-
lems inevitably seem to arise, to be fixed only in later generations.
Why do these performance issues fail to appear in experi-
mental settings before the technology is deployed? We believe
that one of the major reasons behind the discrepancies found
between experimental performance evaluations and real-world
experience lies in the unrealistic workload patterns typically
used in experiments. One of the significant contributions of
this work is to rigorously demonstrate that common synthetic
traffic models for wireless local-area networks induce drastically
distorted performance metrics at every layer of the protocol
stack. In order to show this, we present a testable definition of
“sufficient realism” for traffic models, and develop the theoretical
methodology necessary to interpret experimental results using
this definition. Finally, we show by example that this distortion
can completely invert the relative performance of protocols.
The greater overall contribution of this paper, however, is the
complete collection of ideas, techniques and analytical tools that
will allow the development of more realistic synthetic traffic
models in the future.

I. INTRODUCTION

The experimental evaluation of new wireless technologies
inevitably requires network traffic. The most commonly used
models for generating wireless local-area network (WLAN)
workload are simple, treating both nodes and flows uniformly,
and are generally understood to be naı̈ve. They remain popular
because of the lack of compelling alternatives. The scope
of impact of different workloads on network performance is
largely unresearched and thus, poorly understood. We believe
that one of the major handicaps preventing wireless experi-
ments from more accurately predicting real-world performance
is the lack of realistic models of WLAN workload.

One of the hardest problems in modeling phenomena as
complex as network traffic patterns lies in determining which
characteristics of any given exemplar of behavior are essential
and which can safely be abstracted away. In WLAN traffic
modeling, important characteristics have largely been deter-
mined based on intuition. In previous work [1], we introduced
a fundamentally different approach to evaluating the realism of
workload models. Rather than subjectively choosing statistical
measures that may or may not actually influence network
performance, the realism of a model is measured directly in
terms of its ability to accurately reproduce critical performance
metrics. We define a traffic model to be sufficiently realistic
with respect to a given performance metric, if the model
produces metric values that are similar to those observed using

the original trace to generate traffic. Using this new approach,
we explore the space of traffic models, establishing rigorously
for the first time that common but simplistic models of WLAN
traffic drastically misrepresent important performance metrics
at all levels of the protocol stack.

Our analysis shows that the standard constant bit-rate (CBR)
traffic model, with uniformly chosen nodes and uniform flows
of traffic, significantly misrepresents important performance
metrics at every level of the network. To qualify these results
in more depth, we also investigate partially synthetic variants
of this standard model, allowing us to reason about which
aspects of workload models have the most impact. For the
most commonly used model, the delay of application data
traversing the network from sender to receiver is underesti-
mated by more than a factor of 5, on average, and by more
than a factor of 11 in a quarter of usage scenarios. Network
control overhead is overestimated, on average, by a factor of
about 2.5, while link control overhead is underestimated by
almost a factor of 2. Even for metrics where the average and
median misrepresentations are not so extreme, the statistical
characteristics of error values often indicate that something
is fundamentally unrealistic. None of the partially synthetic
models manage to accurately represent more than one or two
performance characteristics. We further use the AODV [2] and
OLSR [3] ad hoc routing protocols to show that the relative
performance of protocols can be inverted when changing from
using a simplistic traffic model to using real traffic: using
random end-point, uniform CBR traffic, AODV appears to
induce less link-layer overhead than OLSR, whereas using real
traffic, it in fact induces more.

The first major contribution of this work is the defini-
tion of “sufficient realism,” together with the analytical and
statistical methodology to rigorously test whether synthetic
traffic models meet this definition. The second contribution
is the conclusion that the most commonly used model of
wireless traffic drastically and consistently misrepresents some
of the most important metrics for performance evaluation of
wireless protocols. Many performance comparisons based on
this model may need revisiting. The last and most important
contribution is the collection of ideas and analytical tools
necessary to create more realistic synthetic traffic models in
the future. By applying the methods developed in this work, it
will be possible to discover precisely which aspects of network
usage affect the realism of performance results. Once this is
known, it will become feasible to create models that accurately
reproduce those aspects of real wireless usage.



The rest of the paper is organized as follows. In Section II
we present motivation and related work. Our experimental
and analytical methodology is presented in Section III, while
the results of our experiments are explained and analyzed in
Section IV. The ramifications of these results are discussed
in Section V. Finally, in Section VI, we conclude with a
discussion of how this research may be applied to current
wireless studies, and how it points the way to better traffic
models for the future.

II. MOTIVATION & RELATED WORK

The history of networking research contains many exam-
ples of simplistic models that have proven not only to be
inaccurate, but also to drastically skew important character-
istics of network behavior. Paxson and Floyd showed that
the Poisson packet arrival model, which had been standard
for studying wide-area Internet traffic, failed to capture the
burstiness and self-similarity of real traffic [4]. The equally
common but simplistic Random Way-Point (RWP) mobility
model was found to exhibit “density waves” and gradual slow-
down of average node speed [5], [6]. In the worst cases,
overly simplistic models can switch the relative performance
of protocols, thereby invalidating the conclusions drawn from
performance comparisons using those models.

The interaction of wireless user and application behavior
with the lower layers of the networking stack is characterized
by where, when, how much, and to whom data is transmitted.
The joint pattern of traffic generation and mobility through
time and space completely determines the effect of wireless
usage on the lower levels of the network. This is due to
the data-agnostic nature of the protocol stack: by design, IP
networks treat all data in the same manner.1 The credibility
of conclusions derived from simulation or experimental de-
ployment depends crucially on our confidence that the models
used to generate traffic and motion in the experiments are
sufficiently realistic.

Paxson and Floyd observed in [4] that the interplay between
end-point behavior and the network conditions is inherently
closed-loop in the sense that it is potentially affected by
complex feedback. Traffic models typically attempt to preserve
the closed-loop behavior of network traffic [7], [8]. This
presents a fundamental difficulty, however, in that it presumes
that we know the intent of end-points: what would they have
done under different conditions? While we can speculate about
what an individual node might hypothetically do, we currently
do not understand the impact of the full-network traffic pat-
tern upon performance metrics at all—even without trying
to account for hypothetical reactions to alternate situations.
Especially in the wireless setting, a fuller understanding of
total network behavior must be reached before we can sensibly
tackle the complexities of multi-level behavioral feedback.

1This is violated by some quality of service (QoS) schemes. However, we
can simply add QoS metadata—such as traffic classes or urgency flags—to
our models of user behavior and the rest of our arguments remain valid. The
network is still disinterested in the exact content of the data being transported;
only the QoS metadata is relevant.

Accordingly, in this paper we attempt to provide a first-order
approximation of complete network behavior by studying the
response of performance metrics to open-loop traffic models
without multi-level feedback. It is important to realize that
while this does not provide a final picture, we currently lack
even a first-order understanding of the effect of different
workloads on performance. This first-order understanding is
an essential initial step.

There have been a significant number of studies of large
wireless network deployments [9]–[16]. These analyses have
described a wide variety of aspects of wireless network be-
havior, and provide much insight into the workings of real,
deployed wireless networks. These studies present a broad
analysis of general system features and trends of specific
corporate wireless local-area networks (WLANs) [9], [11],
university campus WLANs [12]–[15], [17], [18], and temporary
WLANs at conference venues [10], [16]. They also provide a
large body of raw data for subsequent analysis and modeling
research. Our work provides the methodology for turning this
rich foundation of field data into usable, realistic models of
workload for a wide variety of networking situations.

The choice of mobility models for mobile wireless simu-
lations can have a drastic impact on important performance
metrics [6], [19]–[22]. Moreover, commonly used but sim-
plistic mobility models, such as RWP, exhibit characteristics,
including density waves and speed decay, that are categorically
dissimilar from any known real-world behavior [5], [6], [20].
In response to this evidence, more realistic mobility models
have been proposed [18], [21], [23]. While much of this work
focuses on making models that are simply more intuitively
appealing [21], [23], some work has begun to capitalize on
this newly created wealth of wireless field data by deriving
models from observed usage behavior, rather than intuition
alone [11], [18].

In this paper, instead of mobility, we examine an even more
fundamental aspect of user behavior in wireless networks: the
pattern of traffic generated by users and applications. This
aspect of behavior is more fundamental because it applies to
all types of wireless networks, not just mobile and ad hoc
networks. Moreover, the effect of traffic patterns applies not
only to simulations, but also to experimental deployments,
which have become the gold standard for wireless protocol
evaluation. Experimental deployment sidesteps the issue of
accurately modeling the lower layers of the network. Unless
traffic and mobility are modeled realistically, however, the
experimental results will still be unreliable.

There is a large and diverse body of work on traffic analysis,
modeling, and generation [4], [7], [8], [24], [25]. We are
only able to discuss a small, but hopefully representative
sampling of this work. Almost all of the traffic generation
work has focused on wide-area Internet backbone traffic.
The two most prominent traffic generation frameworks are
Harpoon and D-ITG. Harpoon [25] uses a traffic trace for
self-training, and can subsequently generate synthetic traffic
with certain statistical properties based on the original trace.
The properties reproduced are the empirical distributions of



the following: “file size, inter-connection time, source and
destination IP ranges, number of active sessions.” There is
no criterion proposed to determine whether these properties
characterize the original traffic adequately—we can only hope
that this approximation is good enough. For many purposes,
it likely is sufficient; in particular, it is probably appropriate
for the intended use in generating traffic for Internet backbone
simulations. Wireless networks, however, are particularly sen-
sitive to workload conditions, and sampling from a limited set
of empirical distributions does not suffice to reproduce realistic
network-wide traffic.

D-ITG [7] generates flows using an independent sampling
model for packet sizes and inter-packet intervals. The frame-
work contains pre-made models for several common types
of Internet traffic. The focus of this project, however, is on
providing the infrastructure to generate very large volumes
of synthetic Internet-like backbone traffic. No analysis is pro-
vided for determining the realism of traffic mixes, or for choos-
ing flow end-points realistically. In wireless networks, these
factors are of crucial importance to performance, and cannot
be overlooked. Both Harpoon and D-ITG provide excellent
traffic generation platforms, but do not provide a systematic
framework for understanding or reproducing realistic whole-
network workload in the wireless setting.

III. METHODOLOGY

The art of simulation lies in knowing which details must be
realistic and which may be abstracted into simpler, approx-
imate models without affecting the accuracy of the results.
Clearly, we need not simulate subatomic particle interactions
in a wireless network simulator. Instead we use high-level
physical models that approximate the real physics well enough
that the performance results are the same. Similarly, when
modeling network usage, we must require that our models pro-
duce the same results as actual user behavior. This requirement
leads us to the following definition:

Definition. A model of user behavior is sufficiently realistic
if, when compared with actual user behavior, the model,
with parameter values extracted from the real data, yields
statistically equivalent performance results.

This definition depends on many factors: the type of wire-
less scenario, the performance metrics under consideration, the
actual usage behavior used for comparison, and how strong
a notion of statistical equivalence is required. We discuss
different measures of error and how to evaluate statistical
equivalence in Sections III-D and III-E.

A. Trace Data

Our general methodology is to compare performance met-
rics in simulations using real traffic patterns from traces to
the same metrics in simulations using a variety of synthetic
traffic models, including the standard random, uniform CBR
model. For our analysis, we use a 24-hour trace recorded in
an infrastructured 802.11g wireless LAN with 18 access points,
deployed at the 60th Internet Engineering Task Force meeting
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Figure 1: The number of active nodes and flows over time.

(IETF60), held in San Diego during August of 2004. The traffic
trace was captured using tcpdump at a single router, through
which all wireless traffic for the meeting was routed, including
traffic between wireless nodes. The snap length of the capture
was 100 bytes, allowing IP, ICMP, UDP and TCP headers to be
analyzed. We limit our work to the 24-hour sub-trace recorded
on Wednesday, August 4th. This trace contains a broad variety
of behaviors and entails a very large volume of traffic: 2.1
million flows, 58 million packets, and 52 billion bytes.

We do not assume or claim that the traffic found at IETF60 is
representative of conference settings in general. The observed
behaviors are also unlikely to resemble those found in a typical
commercial or residential setting. We have chosen this trace,
however, because within it can be found behaviors resembling
many different types of wireless usage cases. Figure 1 shows
the wide variations in the number of active flows and nodes
over the course of the trace. In the night and morning hours,
the traffic patterns are similar to those one might find in
a moderately trafficked business or residential area. During
working group sessions, we see highly concentrated, heavy
usage patterns. At the zenith of activity, over 800 users, 33
thousand flows, and 1 million packets are seen in a single
10-minute trace segment. At the nadir, a lone node sent only
a single 61-byte packet in 10 minutes. All levels of activity
between these extremes are represented. Moreover, the mix of
traffic types observed changes dramatically over the course of
the day, providing a wide representation of possible blends of
behavior. This heterogeneity and extreme range of behaviors
makes the IETF data set ideal for this evaluation. The variety
of activity gives us greater confidence that success or failure
of traffic models is not tied to any specific network condition,
but is broadly and generally applicable.

Before using the traces, it is necessary to extract application-
level behavior from the trace header data. First, we split the
trace into individual packet flows. A flow is a series of packets
sharing the following five attributes: IP and transport protocols
(raw IP, ICMP, TCP, UDP); source and destination IP addresses
and TCP/UDP port numbers. Next, the quantity of application-
initiated data contained in each packet is calculated. For non-
TCP packets, this quantity is simply the size of the transport-
layer payload, but for TCP the calculation is more complicated:
only new data transfers, explicitly initiated by the application
are counted. Data retransmitted by TCP is disregarded, and
empty ACKs are ignored. SYN and FIN flags in packets (even
empty ones) are counted as a single byte each, since they are
explicitly signaled by the application.



Behavior Level Model Description

Flow Topology
Trace Mapping of flow end-points to wireless nodes taken directly from trace data.

Sink One end-point is internal and the other external. The internal node is randomly chosen.

Uniform Both end-points are uniformly randomly chosen from all of the wireless nodes.

Flow Behavior
Trace Each flow has the actual start time, end time, total data sent, and number of packets from the trace.

Uniform All flows have the same duration, volume, packet rate, and data rate as the trace average.

Packet Behavior
Trace The sequence of packet sizes and inter-transmission intervals is taken directly from the trace.

Uniform Packets sizes are uniform and the inter-packet interval is constant (CBR).

Table I: The three orthogonal levels of traffic behavior, and the traffic models used for each level.

B. Simulations

We use the Qualnet wireless network simulator to perform
our experiments. We simulate a stationary multi-hop 802.11b
network using the Ad hoc On-demand Distance Vector (AODV)
routing protocol, with nodes placed randomly in a square field
with sides of 1500 meters. In addition to the active nodes cor-
responding to trace IPs, equally many passive “infrastructure”
nodes are added to each simulation: these nodes initiate no data
and simply serve as additional network relays. Our simulations
resemble multi-hop mesh networks of the kind that are increas-
ingly studied and deployed for delivery of broadband access
in residential, corporate and conference settings. We do not
attempt to reproduce the physical environment of the original
wireless network, nor do we simulate mobility. The only aspect
of the original network’s behavior that is reproduced is the
total pattern of network-wide traffic.

There are a number of potential objections to this approach.
We use single-hop trace data to drive multi-hop simulations;
the physical environment, node mobility, handover behavior,
and closed-loop dynamics (including TCP feedback) of the
original wireless setting are not faithfully reproduced. One
must keep in mind, however, that the goal of this research
is not to understand the conditions of the original network.
Rather, we are using the traffic behaviors observed as examples
to help us better understand how different types of workload
can affect performance metrics. In particular, we aim to un-
derstand how real workload compares with common synthetic
traffic models. Of course, the reason for such objections is that
networking researchers understand that the many aspects of
behavior interact with each other in a complex and nearly in-
extricable manner. However, before we can hope to understand
the interaction between workload and other features affecting
network behavior, we must study traffic patterns alone, and
learn to model them with reasonable accuracy in the absence of
additional complicating factors. Accordingly, in this study, we
detach application level traffic patterns from the other factors
influencing network conditions, and study them in isolation.

The 24-hour trace is split into 144 10-minute segments,
each of which serves as the basis for a set of simulations
using different traffic models. The traffic models range from
a completely realistic trace-driven model, to a standard CBR
traffic model. Various partially synthetic intermediate models,
described in Section III-C, are simulated to study the impact of
different aspects of traffic behavior on network performance.

To preserve the fairness of the performance comparison, we
keep as many features as possible constant across different
traffic models. The traffic generated by each synthetic model
preserves as many characteristics from the original trace
as possible, within the constraints of the model. Moreover,
the following features are preserved across all models: the
numbers of wireless nodes, the number of flows, the number
of application-initiated data units sent, the total bytes of
application data sent, and the average flow duration (and
therefore the average data rate).

C. Traffic Models & Performance Metrics

We separate our traffic generation models into three orthog-
onal and nearly independent levels of behavior:

1) Flow End-Point Topology: which nodes communicate
with each other, and how frequently; i.e. how flow end-
points are mapped onto nodes in the network.

2) Flow Behavior: high-level parameters for each flow,
including start time, end time, packets sent, bytes sent.

3) Packet Behavior: sizes of individual packets, and the
intervals between their transmission.

For each level of traffic behavior, we compare several different
behavior models. The different levels of models and variants
at each level are listed and described in Table I and illustrated
with specific examples in Figure 2.

The three levels of behavior are orthogonal and can be
varied almost independently. The exception to their indepen-
dence is that the trace-based packet behavior model can only
be used when the flow behavior model is also trace-based.
Once flow behavior is decoupled from the actual trace, there
is no natural way to preserve packet behavior. This eliminates
three combinations of models and leaves nine viable behaviors,
abbreviated by the first letters of their flow topology, flow
behavior, and packet behavior models: TTT (fully trace-based),
TTU, TUU, STT, STU, SUU (entirely synthetic, sink topology),
UTT, UTU, UUU (entirely synthetic, uniform topology).

We have selected nine performance metrics at the applica-
tion, network, and link layers of the protocol stack:

1) Application: average end-to-end delay, average jitter,
total received throughput.

2) Network: AODV control overhead (RREQ/RREP/RERR),
RREQs initiated per node, routing queue drop rate.

3) Link (MAC): control overhead (RTS/CTS/ACK), packet
retransmission rate, retransmission failure rate.
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(c) Flow Topology: Uniform
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(d) Flow Behavior: Trace
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(f) Packet Behavior
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Figure 2: Examples illustrating the dif-
ferent traffic models for the three lev-
els of behavior. Figures 2a, 2b and 2c,
show example flow topologies. The width
of each line is proportional to the log-
arithm of the number of flows between
the nodes it connects. In each graph, node
zero is the gateway to the Internet. Uni-
form and trace flow behavior examples are
plotted in Figures 2d and 2e. The time
axis indicates when the various flows start
and end; the width of each flow line is
proportional to the logarithm of its data
rate. Flow numbers are assigned arbitrar-
ily. Figure 2f compares packet behavior
for the uniform model (i.e. CBR), with the
trace of an actual flow. In the uniform
model, the cumulative data sent increases
smoothly over time (gray diagonal line).
In the actual packet trace, the data trans-
missions are variable both in size and
in inter-transmission interval, leading to
a “lumpy” cumulative data history (black
step-function).

These metrics are commonly used to evaluate the performance
of new wireless protocols. For each of the 144 10-minute trace
segments, we have run simulations using each of the nine
traffic models, for a total of 1,296 simulations.

D. Measures of Error

The simulations described in Section III-C provide us with
the raw data to compare performance metrics for synthetic
traffic models with those for real traffic traces. To assess the
realism of these models, however, we need a measure of how
inaccurate the synthetic performance values are when com-
pared to the real values. Let x be the value of a performance
metric using real traffic, and y the value of the same metric
using an alternate traffic model, M. Some common measures of
error are the difference [y−x], the ratio [y/x], and the standard
error [(y− x)/x]. These are all reasonable measures of error;
but which is most appropriate for assessing the realism of
performance metrics? Instead of picking one arbitrarily, we
will first consider the properties that an ideal error function
should have, and then use those properties to determine the
best measure of error. Moreover, we will show that the unique
measure of error that exhibits these ideal properties is the log-
ratio of metric values:

log(y/x) = log(y)− log(x). (1)

In this discussion, E(x, y) is a generic error function applied
to the synthetic value, y, with respect to the real value, x.

The first property that an error function should have is
insensitivity to common factors. That is, if both values are
scaled by the same constant, the error should be unaffected:

∀ x, y, c : E(xc, yc) = E(x, y) (2)

There are three major motivations for this requirement:

1) Changing units should not affect error values.
2) Error values for “large” and “small” scenarios should be

directly comparable. Scenarios with large x values will
naturally have larger raw differences between x and y.
This requirement allows scenarios of different scales to
be compared fairly and without bias.

3) Changing between metrics that differ by a known con-
stant for each scenario should not affect error values.

The last point is best illustrated by an example. Consider two
closely related performance metrics: average throughput, t,
and total bytes received, r. Suppose that there are f flows in a
given scenario with average duration, d. Since t = r/fd, the
metrics t and r contain the same information—they differ only
by a known constant in each simulation scenario. Equation 2
ensures that the errors of these metrics are the same:

E(tTTT, tM) = E

(
rTTT

fd
,
rM

fd

)
= E(rTTT, rM). (3)

The difference measure does not satisfy Equation 2, but the
ratio, standard error, and log-ratio error measures all do.

The second property that an ideal error function should have
is additivity of compounded errors. If two independent causes
of error each induce some factor of misrepresentation, then
the combined error should be the sum of the errors caused by
each factor separately:

∀ x, c1, c2 : E(x, xc1c2) = E(x, xc1) + E(x, xc2). (4)

This property allows us to compare error values meaningfully
across different traffic models. For example, if flow topology



and packet behavior affected some performance metric inde-
pendently with no interaction effects, we would expect that

E(xTTT, xUTU) ≈ E(xTTT, xTTU) + E(xTTT, xUTT). (5)

If these two values differ significantly, there must be some
interaction between the two levels of behavior that introduces
more error than can be explained by each separately. Without
the property of additivity given in Equation 4, such a compar-
ison would not be possible or meaningful.

Additivity of compounded errors also implies two desirable
properties that are easily derived from Equation 4. It forces the
error of an accurate representation to be zero: E(x, x) = 0. It
also forces underestimation and overestimation to be treated
symmetrically. The error of underestimating by some factor is
opposite but equal to overestimating by the same factor:

E(x, x/c) = −E(x, xc). (6)

It is easily verified that the difference, ratio, and standard
error measures do not satisfy Equation 4, and the difference,
as noted, does not satisfy Equation 2. The log-ratio is the only
metric presented that satisfies both conditions. Moreover, it can
be proved that log(y/x) is the only differentiable function that
satisfies both (up to a constant). In the Appendix, we present
a proof of this claim. Throughout the rest of the paper, we use
the log-ratio to measure the error of performance metrics.

E. Tests of Statistical Equivalence

In this section, we consider the values of performance met-
rics as random variables, drawn from unknown distributions.
We present three tests for the statistical equivalence of the
metric values induced by synthetic and real traffic. Let M be
a traffic model as before and let X be a performance metric.
Let XM

k be a random variable representing the value of X in
the kth scenario using the traffic model M. If the distribution
of XM

k is the same as that of XTTT
k , then both the median and

mean values of the log-ratio RM
k = log(XM

k /XTTT
k ) should

be zero. The first two tests check the plausibility of precisely
these hypotheses. The third test separates small, medium, and
large simulation scenarios, and test their means separately to
catch any size-dependent performance bias.

The Median Test. If M induces realistic performance, then
the median of each log-ratio variable, RM

k = log(XM
k /XTTT

k ),
should be zero. The kth indicator variable is defined as

IM
k =

{
0 if RM

k < 0,
1 if RM

k ≥ 0.
(7)

If the median value of RM
k is truly zero, then IM

k is a Bernoulli
variable with probability parameter p = 1

2 . The variables IM
k

are all independent since they come from separate simulations,
and cannot affect each other’s outcomes. Therefore, the sum
SM

n =
∑n

k=1 IM
k should follow a binomial distribution of n

trials with p = 1
2 . The median test applies the exact binomial

cumulative distribution function (CDF) for n and p to the
observed value of SM

n , yielding a p-value: the probability
that such an extreme value would occur by chance under the
hypothesis that the median of each RM

k is zero.

The Mean Test. We use Lyapunov’s generalization of the
Central Limit Theorem (LCLT) to test the hypothesis that the
mean of each RM

k is zero. We present the theorem and its
application to the series RM

k in the Appendix. Here we simply
present the resulting test statistic and its usage. If the mean of
each RM

k is zero, then LCLT implies that the test statistic

ẐM
n =

∑n
k=1 RM

k√∑n
k=1 (RM

k )2
(8)

converges to a standard normal distribution for large values
of n, where n is the number of simulated scenarios. In this
case, n = 144, which is fairly large by traditional statistical
standards. The p-value of the mean test is given by applying
the standard normal CDF to the test statistic, ẐM

n .
The 3-Mean Test. Performance behavior in scenarios with

a large number of nodes or flows is often very different from
behavior in small scenarios. In some cases, RM

k is skewed
positively for one group, but negatively for another. In such
cases, RM

k can pass the median and mean tests even though
behavior in each case is unrealistic. To catch such situations,
we split the simulations into three groups by the number of
flows: the lower, middle, and upper thirds. The 3-mean test
simply applies the mean test to each of these groups separately
and uses the minimum p-value of the three. This reduces the
power of the test, since each group is smaller, but can catch
cases where the error has size-dependent biases that cancel
out on average.

IV. RESULTS

Our simulation results are summarized in Figure 3. Each
subfigure shows a single performance metric. The distribution
of errors for each traffic model is visualized with a box-
and-whisker plot. These plots allow immediate assessment of
realism: a good traffic model should have log-ratio values that
are tightly clustered around the center, with a small, evenly
balanced box. Additionally, the mean and median markers
should be close to the center. Complementing the visual
display of summary statistics, Figure 3 also lists three p-values
to the right of each box-and-whisker plot. These are, in order,
the p-values for the median, mean and 3-mean tests described
in Section III-E. Each test catches a different type of unrealistic
statistical behavior.

The UTU model, for example, which uses real flow behavior
but synthetic flow topology and packet behavior, does a very
good job of accurately reproducing realistic average end-to-
end delay (Figure 3b): the median and mean are both close to
zero, and the p-values are all greater than 0.05. The standard
uniform CBR model (UUU), on the other hand, underestimates
average end-to-end delay by between a factor of 2 and 11 half
of the time, and by more than a factor of 11 a quarter of the
time. Its p-values for delay are all less than 0.005.

Figure 3a shows that the STU traffic model passes the
mean test but not the median or 3-mean tests. This result
indicates that this model tends to overestimate jitter, but in
some subset of cases it significantly underestimates instead,
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Figure 4: Scatter plots of various metrics for an alternate traffic model (STU, UTU, SUU) versus real trace traffic (TTT). Each data point
represents a pair of matched simulations: the x-coordinate is the metric value for trace traffic, the y-coordinate is the metric value for the
synthetic model. Scenarios are plotted according to the amount of flows in their trace segment: the bottom third with filled dots; the middle
third with circles; the top third with squares.

yielding a mean near zero, but a skewed median. This analysis
is verified when we examine a scatterplot of metric values for
STU versus TTT traffic models. In Figure 4a we can see that for
the majority of simulations, the STU value for jitter exceeds
the TTT value. In a significant minority, however, the STU
model yields very small jitter values, while the TTT model
gives large values. Even though the average error is near zero,
this is not a model that reproduces realistic jitter.

The UTU traffic model accurately reproduces packet drop-
ping behavior in routing queues. Figure 4b shows a scatterplot
for such a realistic model: the data points are well clustered
symmetrically around the diagonal line. We conclude that the
primary influence on the packet drop rate is flow behavior.
However, if we use a sink topology model, as in Figure 4c,
the drop rate becomes inflated. The sink topology introduces
an unrealistic routing bottleneck in the network, causing
excessive queue overflows for all sizes of scenarios. The
uniform topology model does not exhibit this bottleneck, and
thereby avoids producing this unrealistic performance artifact.
This demonstrates that while the uniform topology model is
generally less realistic than the sink model, for certain metrics,
their relative quality is the opposite.

Figure 4d illustrates a case where the 3-mean test catches
unrealistic behavior that the median and mean tests do not
catch. From Figure 3i we can see that the mean and median
error values for the SUU model are fairly small. The scatter-
plot, however, shows that this model significantly underes-
timates the failure rate for large scenarios with many flows
(squares), while overestimating the rate in smaller scenarios.

There are few, if any, positive conclusions that can be drawn
from these results. The primary message is that these synthetic
traffic models, especially the standard uniform CBR model,
consistently misrepresent the most important performance
metrics. The traffic model that performs the best overall is the
UTU model, which uses real flow behavior with uniform flow
topology and uniform packet behavior. This model, however,
still fails statistical tests of realism for all but two of the
metrics considered. Further development of traffic models

is needed before it becomes possible to generate traffic in
simulations or experimental deployments such that a single set
of experiments can realistically evaluate all aspects of network
performance.

V. DISCUSSION

What are the ramifications of these results? The discovery
that the most commonly used traffic model for wireless net-
works drastically misrepresents important performance metrics
may shed some light on the lack of trust in results from
wireless simulations. It is now well established that network
usage behavior—both mobility, and, with this research, traffic
patterns—have an impact on network performance that cannot
be ignored. Even experimental deployments cannot avoid the
need for more realistic traffic workload models. While using
a real, physical network successfully sidesteps simulation
problems below the application layer, without realistic traffic
models, reliable, meaningful performance predictions remain
beyond our reach.

A. Relative Performance Comparisons

Performance evaluations are primarily used to compare new
protocols with existing ones. It remains possible that while
misrepresenting important metrics, synthetic traffic models
preserve the relative performance of protocols. In order to
test this hypothesis, we have run further simulations, revisiting
a classic comparison of ad hoc routing protocols: AODV vs.
OLSR. We focus on the trace segments with 75 or fewer active
nodes, since published performance comparisons of ad hoc
routing protocols have typically not used more nodes than this.
For each scenario, we have run simulations with 10 different
seed values using the AODV and OLSR routing protocols and
the UUU and TTT traffic models, allowing us to compare
relative performance results when switching traffic models.

The key result of our comparison is that, for certain
performance metrics, the relative performance of AODV
and OLSR is inverted, simply by changing traffic models.
Figure 5 shows some of the results from this experiment.
The graph plots MAC control overhead against the number
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Figure 5: Comparison of MAC control overhead for AODV and OLSR
using both the UUU and TTT traffic models. The fit lines show locally
weighted, smoothed performance trends.

of nodes in each simulation scenario. Each data point shows
the average overhead for the simulations of that scenario using
ten seed values. With the standard UUU traffic model, OLSR
consistently has much higher overhead, across the board, than
AODV. When real traffic is used, however, OLSR performs
significantly better than AODV. A similar switch occurs for
the number of MAC retransmissions. This experiment demon-
strates that the use of unrealistic traffic models can change the
relative performance of different protocols, as well as skew
absolute performance measurements.

B. Generality of Results

The most significant limitation on the generality of this
analysis is that it is based entirely on a single data set from
IETF60—albeit a large and varied one. It is possible that traffic
in this trace happens to produce network performance that
is unusually dissimilar to standard traffic models. This data
set, however, represents a highly heterogeneous collection of
network usage behaviors, from slow and steady off-peak usage,
to extremely heavy peak usage: over 800 users, 33 thousand
flows, and 1 million packets in a single 10-minute trace
segment. Despite the broad variety of behaviors, the results
are consistent: in all types of usage scenarios, simplistic traffic
models, like uniform CBR, systematically skew important
performance measurements at all levels of the network. While
the precise results for other data sets might differ, it is very
unlikely that CBR traffic models will happen to accurately
reproduce realistic performance in other experiments. This
paper provides strong evidence that better traffic models are
needed for performance evaluations.

C. Towards Realistic Models of Wireless Workload

What would better traffic models look like? How can we
create them? One possible approach is to use actual traffic
traces as we have done. This approach is unsatisfactory,
however, because it provides the experimenter with almost no
control over experiments. Synthetic models have parameters,
which can be tweaked as necessary—adjusting, for example,
the number of active nodes in a simulation, without affecting
other parameters. Traffic traces, on the other hand, must be
used without significant alteration if they are to actually pro-
vide the desired realism. The “messiness” of the performance

comparison from trace data in Figure 5 illustrates why using
traces directly is not ideal: each data point differs not only in
the number of nodes shown on the x-axis, but also in other
dimensions, such as the number of flows and packets, and the
average flow duration. The result is a highly noisy comparison,
affected by many unseen parameters. Only by applying a local
smoothing algorithm are trends somewhat elucidated.

Instead of using trace data directly, it should be possible to
configure a synthetic traffic model based on observations from
a real data set, and then run side-by-side simulations using
the synthetic model and the real data, producing statistically
equivalent performance results. This is precisely what our
definition of sufficient realism entails. The work in this paper
provides the tools to measure how close to this ideal a model
is and in what areas it needs improvement. Without this
feedback, any improvements in realism are purely guesswork.
Our breakdown of traffic behavior into three orthogonal levels
also allows the problem to be approached in smaller pieces,
rather than being solved all at once.

The next step towards better traffic models is to investigate
which aspects of real traces may be altered without detrimen-
tally affecting the resulting performance metrics. For example,
to test whether a complex time-series model of packet behavior
is necessary, we randomize the order of the packet sizes
and/or inter-packet intervals and compare performance using
these randomized traces against performance using the original
traces. If the performance is unchanged, we can conclude that
no complex time-series model of packet behavior is necessary:
sampling the packet sizes and inter-packet intervals from
empirical distributions is sufficiently realistic. If, on the other
hand, the performance characteristics are altered by shuffling
packets, then some time-series model of packet behavior is
needed. By partially randomizing the packet order in specific
ways, the exact limits of realism necessary can be found.
A similar approach will allow the development of realistic
models for the other levels of network usage behavior.

VI. CONCLUSIONS

This research rigorously quantifies the impact of a variety of
synthetic traffic models on performance metrics that wireless
researchers use to evaluate new technologies and protocols.
The first step in this assessment process was to formally define
what it means for a network usage model to be sufficiently
realistic. In essence, a model is considered realistic if it
produces performance results that are statistically equivalent to
those produced by real usage. A well-defined, objective mea-
sure of realism for traffic models has not previously existed.
Evaluations of realism have formerly relied on essentially
arbitrary statistical measures of similarity to real traffic, which
may or may not affect the performance metrics that researchers
care about. The definition of sufficient realism leads us to our
general experimental approach: we use differential analysis
comparing performance metrics derived from real traffic with
those derived from synthetic traffic models. The theoretical
contributions of this analysis are:



1) An in-depth analysis of the desirable mathematical prop-
erties of a measure of error for performance metrics.

2) Proof that the unique measure of error that satisfies these
properties is the log-ratio of metric values.

3) Three rigorous tests of statistical equivalence between
synthetic and real performance results.

These analytical tools allow the evaluation of realism over a
collection of drastically different usage scenarios. Evaluation
over a heterogeneous collection of scenarios is essential to
establishing the credibility of usage models. Moreover, these
theoretical results are equally applicable to other types of
usage models—for example, mobility.

On the practical side, this paper gives crucial insight into
why most researchers do not trust simulation results: with
the traffic models commonly used, the results are unlikely
to reflect real performance. Moreover, this problem will also
hamper experiments in test-bed wireless networks, so long as
the same naı̈ve workload models are used. The only way to
address this fundamental lack of realism is to develop usage
models that reproduce important performance metrics more
accurately. Our theoretical results provide the tools necessary
to do this. The development of better traffic models should
begin with real traces, and proceed by incremental changes,
checked by differential analysis. This approach will allow
the precise mapping of which aspects of traffic patterns have
an impact on performance and which ones can be safely
abstracted away.
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APPENDIX

Theorem. The unique differentiable function satisfying Eqs. 2 & 4 is
E(1, e) ln(y/x). Proof: Let f(z) = E(1, z). Eq. 2 gives E(x, y) =
E(1, y/x) = f(y/x). Eq. 4 gives: f(z) = f(z/w) + f(w). Differentiation
by z yields f ′(z) = w−1f ′(z/w). In particular, if we choose w = z, we get
f ′(z) = z−1f ′(1). Integration by z gives: f(z) = f ′(1)

R
z−1dz + c =

f ′(1) ln(z) + c. By Eq. 4, f(1) = 0, so c = 0. Thus f(e) = f ′(1) ln(e) =
f ′(1). We conclude that f(z) = f(e) ln(z), so E(x, y) = f(y/x) =
f(e) ln(y/x) = E(1, e) ln(y/x), as desired.

Theorem. [Lyapunov’s Central Limit Theorem] Let {Rk}∞k=1 be a series of
independent variables with 〈Rk〉 = 0. Let s2

n =
Pn

k=1

˙˛̨
R2

k

˛̨¸
and r3

n =Pn
k=1

˙˛̨
R3

k

˛̨¸
. For each n, let Zn be the normalized mean of {Rk}n

k=1:
Zn =

Pn
k=1 Rk/sn. If limn→∞ rn/sn = 0, then limn→∞ Zn ∼

N (0, 1) (the standard normal distribution). (See [26] page 229.)

To apply the LCLT to the series RM
k = log(XM

k /XTTT
k ), we must show

that under the null hypothesis, the assumptions of the theorem are satisfied by
this series. First, the null hypothesis, implies that 〈Rk〉 = 0. Variables from
separate simulations are independent since they cannot influence each other’s
values. Formally, Pr (Xk|Xj) = Pr (Xk). Therefore the log-ratios are also
independent for different k. The last requirement is that limn→∞ rn/sn = 0.
To verify this, we use the estimators ŝ2

n =
P ˛̨

R2
k

˛̨
, and r̂3

n =
P ˛̨

R3
k

˛̨
.

When r̂n/ŝn are plotted on a log-log scatter plot, with n increasing up
to the number of simulations, they asymptotically approach a downwardly
sloped line as n grows. Thus limn→∞ ln(r̂n/ŝn)/ ln(n) = c < 0. This
implies that limn→∞ ln(r̂n/ŝn) = −∞, and therefore limn→∞ rn/sn =
limn→∞ r̂n/ŝn = 0. This test for the convergence of rn/sn is applied to
each model and metric pair.
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